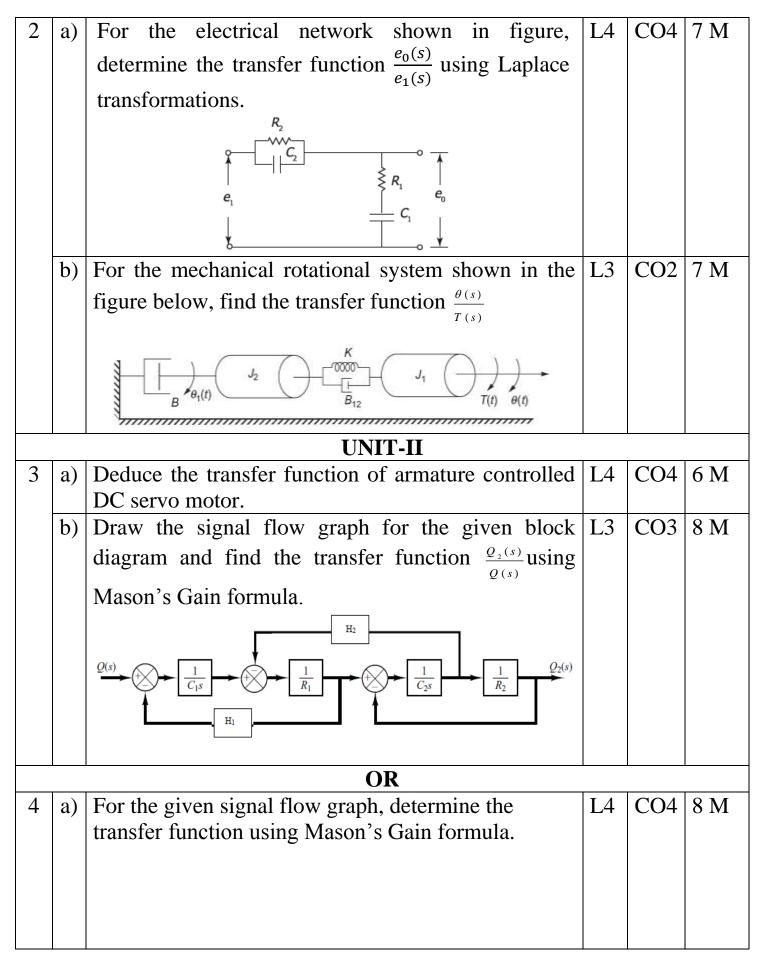
## III B.Tech - I Semester – Regular Examinations - DECEMBER 2022

## **CONTROL SYSTEMS** (ELECTRICAL & ELECTRONICS ENGINEERING)

**Duration: 3 hours** 

Max. Marks: 70


Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

|   |        |                                                        | BL | CO  | Max.<br>Marks |  |  |  |  |
|---|--------|--------------------------------------------------------|----|-----|---------------|--|--|--|--|
|   | UNIT-I |                                                        |    |     |               |  |  |  |  |
| 1 | a)     | List out various classifications of control systems.   | L2 | CO1 | 6 M           |  |  |  |  |
|   |        | Give an example for each classification. Also,         |    |     |               |  |  |  |  |
|   |        | discuss the advantages and drawbacks of open and       |    |     |               |  |  |  |  |
|   |        | closed loop systems.                                   |    |     |               |  |  |  |  |
|   | b)     | Find the transfer function $X_2(s)/F(s)$ for the given | L3 | CO2 | 8 M           |  |  |  |  |
|   |        | mechanical translational system shown in the figure    |    |     |               |  |  |  |  |
|   |        | below.                                                 |    |     |               |  |  |  |  |
|   |        |                                                        |    |     |               |  |  |  |  |
|   |        |                                                        |    |     |               |  |  |  |  |
|   |        |                                                        |    |     |               |  |  |  |  |
|   |        | Re l                                                   |    |     |               |  |  |  |  |
|   |        | M <sub>1</sub>                                         |    |     |               |  |  |  |  |
|   |        |                                                        |    |     |               |  |  |  |  |
|   |        | X, ↓ 60<br>К, 60                                       |    |     |               |  |  |  |  |
|   |        | K, 000000                                              |    |     |               |  |  |  |  |
|   |        | M <sub>2</sub>                                         |    |     |               |  |  |  |  |
|   |        | X <sub>2</sub>                                         |    |     |               |  |  |  |  |
|   |        | * *                                                    |    |     |               |  |  |  |  |
|   |        | <i>F</i> ( <i>t</i> )                                  |    |     |               |  |  |  |  |
|   | OR     |                                                        |    |     |               |  |  |  |  |



|   | b) | <ul> <li>i) Shifting take-off point before the block</li> <li>ii)Shifting summing point after the block</li> <li>iii) Elimination of the feedback loop</li> <li>iv) Interchanging summing points</li> </ul> | L2 | CO1 | 6 M  |
|---|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|------|
|   |    | UNIT-III                                                                                                                                                                                                    | I  | 1   |      |
| 5 | a) | Derive the step response of first order system and plot its response.                                                                                                                                       | L3 | CO3 | 7 M  |
|   | b) | Examine the stability for the given characteristic equation $s^4 + 3s^3 + 2s^2 + s + 1 = 0$ .                                                                                                               | L4 | CO4 | 7 M  |
|   | 1  | OR                                                                                                                                                                                                          | 1  | 1   | L    |
| 6 |    | Sketch the root locus plot for the system with the open loop transfer function $G(s)H(s) = \frac{K(s+1)(s+2)}{s}$ .                                                                                         | L4 | CO4 | 14 M |
|   |    | Examine the system's stability. $(s + 0.1)(s - 1)$                                                                                                                                                          |    |     |      |
|   |    | UNIT-IV                                                                                                                                                                                                     |    |     |      |
| 7 |    | A system is described by the following transfer<br>function $G(s)H(s) = \frac{100(s+6)}{s(s+50)}$ .<br>i. sketch the bode plot representing the<br>magnitudes in dB and the phase angles in<br>degrees.     | L4 | CO4 | 14 M |
|   |    | ii. interpret gain and phase crossover frequencies from the obtained bode plot                                                                                                                              |    |     |      |
|   |    | iii. determine the phase margin, gain margin iv. comment on the system's stability.                                                                                                                         |    |     |      |
|   | 1  | OR                                                                                                                                                                                                          | 1  | 1   | L    |
| 8 | a) | Illustrate the frequency domain specifications and derive mathematical relations of all the frequency domain specifications.                                                                                | L3 | CO3 | 8 M  |

|        | b)  | Discuss the procedure for plotting Bode plot. Also                                                                                                                                                                                                                                                                                                 | L4 | CO4 | 6 M |  |  |
|--------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|--|--|
|        | - / | discuss the methodology in analyzing system's                                                                                                                                                                                                                                                                                                      |    |     |     |  |  |
|        |     | stability through bode plots.                                                                                                                                                                                                                                                                                                                      |    |     |     |  |  |
| UNIT-V |     |                                                                                                                                                                                                                                                                                                                                                    |    |     |     |  |  |
| 9      | a)  | For the given transfer function $\frac{Y(s)}{U(s)} = \frac{24}{s^3 + 9s^2 + 26s + 24}$                                                                                                                                                                                                                                                             | L4 | CO5 | 7 M |  |  |
|        |     | Deduce its state space representation.                                                                                                                                                                                                                                                                                                             |    |     |     |  |  |
|        | b)  |                                                                                                                                                                                                                                                                                                                                                    | L3 | CO2 | 7 M |  |  |
|        |     | to its equivalent transfer function, find the transfer                                                                                                                                                                                                                                                                                             |    |     |     |  |  |
|        |     | function for the state model given by                                                                                                                                                                                                                                                                                                              |    |     |     |  |  |
|        |     | $ \overset{\bullet}{X}(t) = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} u(t) \text{ and } Y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} $                                                                                 |    |     |     |  |  |
|        | 1   | OR                                                                                                                                                                                                                                                                                                                                                 |    |     |     |  |  |
| 10     | a)  | The dynamics of a physical system is described by                                                                                                                                                                                                                                                                                                  | L3 | CO2 | 7 M |  |  |
|        |     | the differential equation                                                                                                                                                                                                                                                                                                                          |    |     |     |  |  |
|        |     | $\frac{d^3y}{dt^3} + 5\frac{d^2y}{dt^2} + 9\frac{dy}{dt} + 6y = 10u.$ Relate appropriate                                                                                                                                                                                                                                                           |    |     |     |  |  |
|        |     | state variables and construct its equivalent state                                                                                                                                                                                                                                                                                                 |    |     |     |  |  |
|        |     | model.                                                                                                                                                                                                                                                                                                                                             |    |     |     |  |  |
|        | b)  | A state model of a system is given as                                                                                                                                                                                                                                                                                                              | L4 | CO5 | 7 M |  |  |
|        |     | $\begin{bmatrix} \cdot \\ x_1 \\ \cdot \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -12 & -7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \text{ and } y = \begin{bmatrix} -10 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \end{bmatrix} u \text{ .}$ |    |     |     |  |  |
|        |     | Determine controllability and observability.                                                                                                                                                                                                                                                                                                       |    |     |     |  |  |